MEMORY COS 4 M × 1 BIT FAST PAGE MODE DYNAMIC RAM

MB814100D-60/-70

CMOS 4,194,304 × 1 Bit Fast Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB814100D is a fully decoded CMOS Dynamic RAM (DRAM) that contains 4,194,304 memory cells in $4M \times 1$ configuration. The MB814100D features a "fast page" mode of operation whereby high-speed random access of up to 2,048-bits of data within the same row can be selected. The MB814100D DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and wide bandwidth are basic requirements of the design. Since the standby current of the MB814100D is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

The MB814100D is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814100D are not critical and all inputs are TTL compatible.

PRODUCT LINE & FEATURES

I	Parameter	MB814100D-60	MB814100D-70		
RAS Access Tim	ie	60 ns max.	70 ns max.		
CAS Access Tim	ie	15 ns max.	20 ns max.		
Address Access	Time	30 ns max.	35 ns max.		
Randam Cycle T	ïme	125 ns min.			
Fast Page Mode	Cycle Time	40 ns min. 45 ns min.			
Low Power	Operating Current	605 mW max.	550 mW max.		
Dissipation	Standby Current	11 mW max. (TTL level) / 5.5 mW max. (CMOS lev			

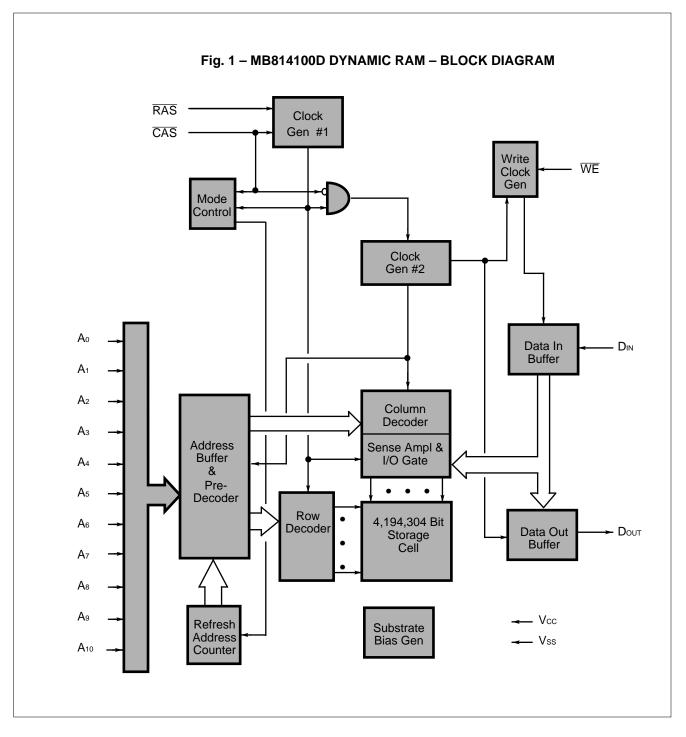
- 4,194,304 words \times 1 Bit organization
- Silicon gate, CMOS, 3D-Stacked capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 16.4 ms
- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-1 to +7	V
Voltage of Vcc supply relative to Vss	Vcc	-1 to +7	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	Ιουτ	±50	mA
Storage Temperature	Tstg	-55 to +125	٥C

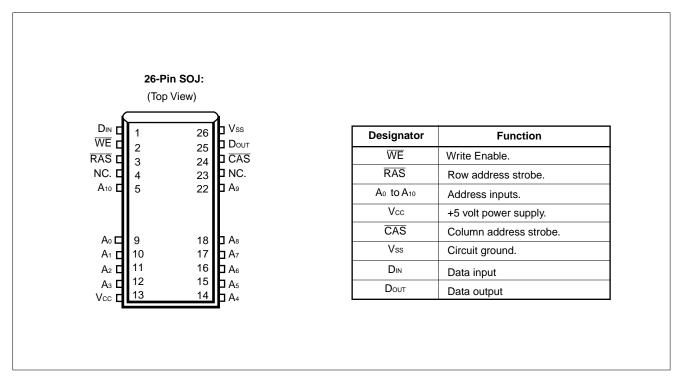
WARNING: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


■ PACKAGE

Plastic SOJ Package (LCC-26P-M04)

Package and Ordering Information

- 26-pin plastic (300 mil) SOJ, order as MB814100D-xxPJN



■ CAPACITANCE

 $(T_A=25^{\circ}C, f = 1MHz)$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, A ₀ to A ₁₀ , D _{IN}	CIN1	_	5	pF
Input Capacitance, RAS, CAS, WE	CIN ₂	_	7	pF
Output Capacitance, Dout	Соит		7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp
	1	Vcc	4.5	5.0	5.5	V	
Supply Voltage*	1	Vss	0	0	0		
Input High Voltage, all inputs*	1	Vін	2.4		6.5	V	0 5°C to + 70°C
Input Low Voltage, all inputs*	1	Vil	-2.0		0.8	V	

* : Reference Voltage : Vss = 0 V

Note: Recommended operating conditions are the recommended values for guarantee of LSI's normal logic operations.

Under this conditions, the limits value of electrical characteristic (AD/DC)is guaranteed.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty two input bits are required to decode any one of 4,194,304 cell addresses in the memory matrix. Since only eleven address bits are available, the column and row inputs are separately strobed by \overline{CAS} and \overline{RAS} as shown in Figure 5. First, eleven row address bits are input on pins A₀-through-A₁₀ and latched with the row address strobe (\overline{RAS}) then, eleven column address bits are input and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{CAS} and \overline{RAS} , respectively. The address latches are of the flow-through type; thus, address information appearing after transmission (min.)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of two basic ways--an early write cycle and a read-modify-write cycle. The falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data is strobed by $\overline{\text{CAS}}$ and the setup/hold times are referenced to $\overline{\text{CAS}}$ because $\overline{\text{WE}}$ goes Low before $\overline{\text{CAS}}$. In a delayed write or a read-modify-write cycle, $\overline{\text{WE}}$ goes Low after $\overline{\text{CAS}}$; thus, input data is strobed by $\overline{\text{WE}}$ and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- trac: from the falling edge of \overline{RAS} when tred (max.) is satisfied.
- tcac: from the falling edge of \overline{CAS} when trcb is greater than trcb (max.).
- taa: from column address input when trad is greater than trad (max.).

The data remains valid until CAS returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 2,048-bits can be accessed and, when multiple MB 814100Ds are used, CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Note 3

Doromotor	Netes	Symbol	Condition		Unit			
Parameter	Notes	Symbol	Condition	Min.	Тур.	Max.	Unit	
Output High Voltage	1	Vон	Іон = -5.0 mA	2.4	—		V	
Output Low Voltage	1	Vol	lo∟= 4.2 mA	_	_	0.4	v	
Input Leakage Current (Any Input)	Іі(L)	$\begin{array}{l} 0 \ V \leq V_{\text{IN}} \ 5.5 \ V; \\ 4.5 \ V \leq V_{\text{CC}} \leq 5.5 \ V; \\ V_{\text{SS}} = 0 \ V; \ \text{All other pins} \\ \text{not under test} = 0 \ V \end{array}$	-10		10	μΑ	
Output Leakage Current	_	IO(L)	0V≤Vouт≤5.5V; Data out disabled	-10		10		
Operating Current (Average Power	MB814100D-60		RAS & CAS cycling;		_	110	mA	
Supply Current) 2	MB814100D-70		t _{RC} = min.			100		
Standby Current	TTL level		$\overline{RAS} = \overline{CAS} = V_{IH}$		_	2.0		
(Power Supply Current)	CMOS level	ICC2	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} - 0.2 \text{ V}$			1.0		
Refresh Current #1 (Average Power	MB814100D-60	Іссз	$\overline{CAS} = V_{H}, \overline{RAS} \text{ cycling};$			110	mA	
Supply Current) 2	MB814100D-70	1003	t _{RC} = min.			100		
Fast Page Mode	MB814100D-60	Icc4	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling;			55	mA	
Current 2	MB814100D-70		t _{PC} = min.			50		
Refresh Current #2 (Average Power	MB814100D-60	Іссь	RAS cycling; CAS-before-RAS;			110	mA	
Supply Current) 2	MB814100D-70	1005	$t_{RC} = min.$			100		

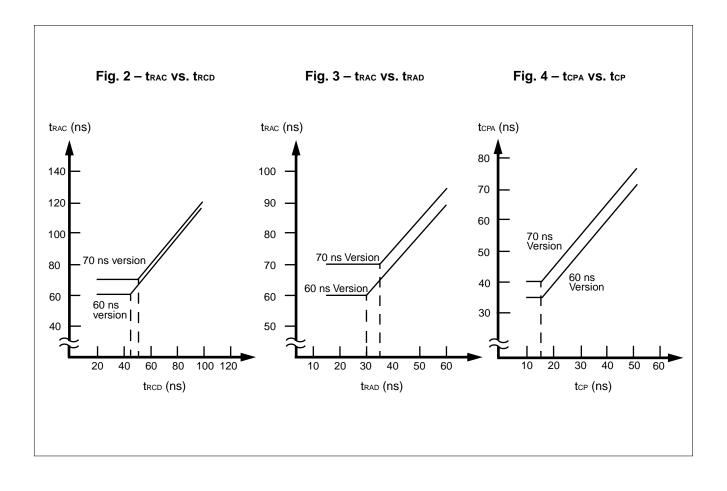
■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Na	Demonster	Nataa	Cumula al	MB814	100D-60	MB814	11:0:1	
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh		t REF	_	16.4		16.4	ms
2	Random Read/Write Cycle Time		trc	110	—	125	—	ns
3	Read-Modify-WriteCycle Time		t rwc	130	—	150	—	ns
4	Access Time from RAS		t rac		60	_	70	ns
5	Access Time from \overline{CAS}	6, 9	t cac	—	15		20	ns
6	Column Address Access Time	7, 9	t AA	_	30	—	35	ns
7	Output Hold Time	8, 9	tон	0	—	0	—	ns
8	Output Buffer Turn On Delay Time		ton	0		0	—	ns
9	Output Buffer Turn Off Delay Time	10	t off	_	15	—	15	ns
10	Transition Time		t⊤	2	50	2	50	ns
11	RAS Precharge Time		t RP	40	—	45	—	ns
12	RAS Pulse Width		t ras	60	100000	70	100000	ns
13	RAS Hold Time		t RSH	15	—	20	—	ns
14	CAS to RAS Precharge Time		t CRP	5	_	5	_	ns
15	RAS to CAS Delay Time	11, 12	t RCD	20	45	20	50	ns
16	CAS Pulse Width		tcas	15	—	20	—	ns
17	CAS Hold Time		tсsн	60		70		ns
18	CAS Precharge Time (Normal)	17	t CPN	10	_	10	—	ns
19	Row Address Set Up Time		t ASR	0	—	0	—	ns
20	Row Address Hold Time		t RAH	10		10	—	ns
21	Column Address Set Up Time		tasc	0		0	—	ns
22	Column Address Hold Time		tсан	15		15	_	ns
23	RAS to Column Address Delay Tim	13	t rad	15	30	15	35	ns
24	Column Address to RAS Lead Time		t RAL	30	—	35	—	ns
25	Column Address to CAS Lead Time		t CAL	30		35		ns
26	Read Command Set Up Time		t RCS	0	—	0	—	ns
27	Read Command and Hold Time Referenced to RAS	14	t rrh	0	_	0	_	ns
28	Read Command and Hold Time Referenced to CAS	14	t RCH	0		0	_	ns
29	Write Command Set Up Time	15	twcs	0		0		ns
30	Write Command Hold Time		twcн	10		10	_	ns

■ AC CHARACTERISTICS (Continued)

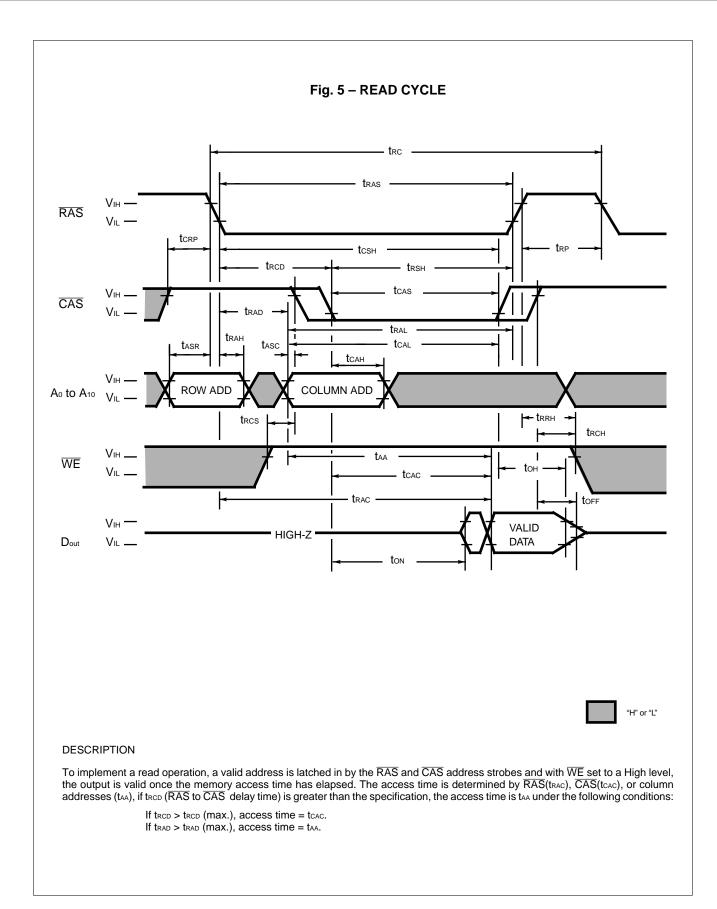
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

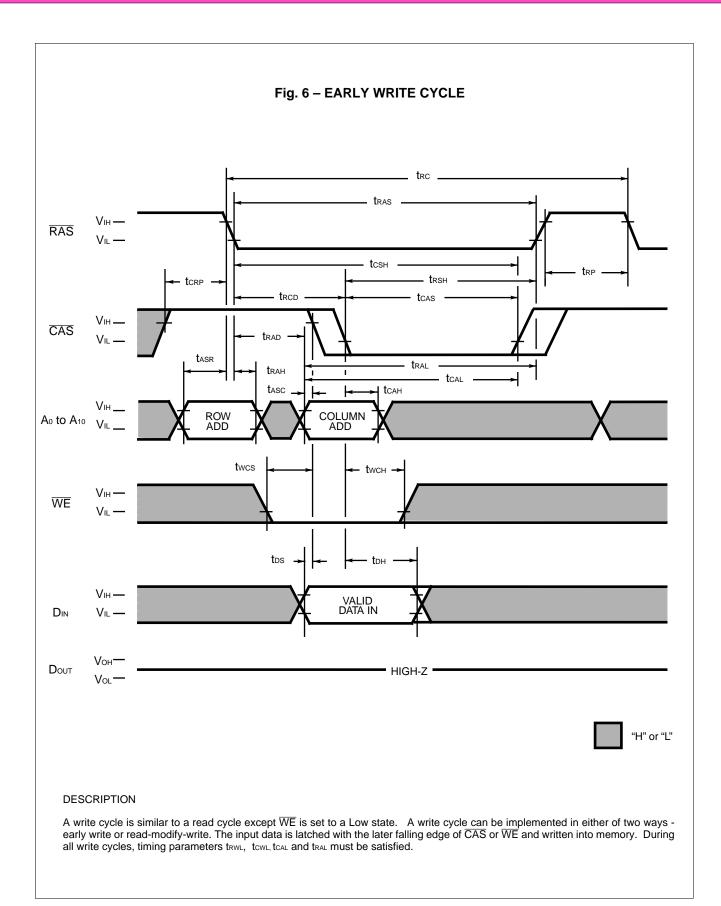

No.	Parameter	Notes	Symbol	MB814 ⁴	100D-60	MB814 ²	Unit	
NO.	Falameter	NULES	Symbol	Min.	Max.	Min.	Max.	Unit
31	WE Pulse Width		twp	10	—	10	_	ns
32	Write Command to RAS Lead Time		t RWL	15		20		ns
33	Write Command to CAS Lead Time		t cw∟	20		20		ns
34	DIN Set Up Time		tos	0		0		ns
35	DIN Hold Time	19	tон	15/18		15/18		ns
36	RAS to WE Delay Time	15	t rwd	60		70		ns
37	CAS to WE Delay Time	15	tcwp	15		20		ns
38	Column Address to \overline{WE} Lead Time	15	tawd	30		35		ns
39	RASPrecharge Time to CASActive Time (Refresh cycles)		t RPC	10		10		ns
40	\overline{CAS} Set Up Time for \overline{CAS} -before- RAS Refresh		t csr	0		0		ns
41	CAS Hold Time for CAS -before- RAS Refresh		t CHR	10		10		ns
42	$\overline{\text{WE}}$ Set Up Time from $\overline{\text{RAS}}^{*_{18}}$	18	twsr	10	_	10		ns
43	WE Hold Time from RAS*18	18	twhr	10	_	10		ns
44	Fast Page Mode RAS Pulse Width		t rasp		200000	_	200000	ns
45	Fast Page Mode Read/Write Cycle Time		t PC	40	_	45	_	ns
46	Fast Page Mode Read-Modify-Write Cycle Time		t PRWC	65		70		ns
47	Access Time from CAS Precharge	9, 16	t CPA		35	_	40	ns
48	Fast Page Mode CAS Precharge Time		t CP	10	—	10	—	ns
49	Fast Page Mode RAS Hold Time CAS Precharge		t RHCP	35		40		ns
50	Fast Page Mode \overline{CAS} Precharge TimeWEDelay Time		t CPWD	35		40		ns

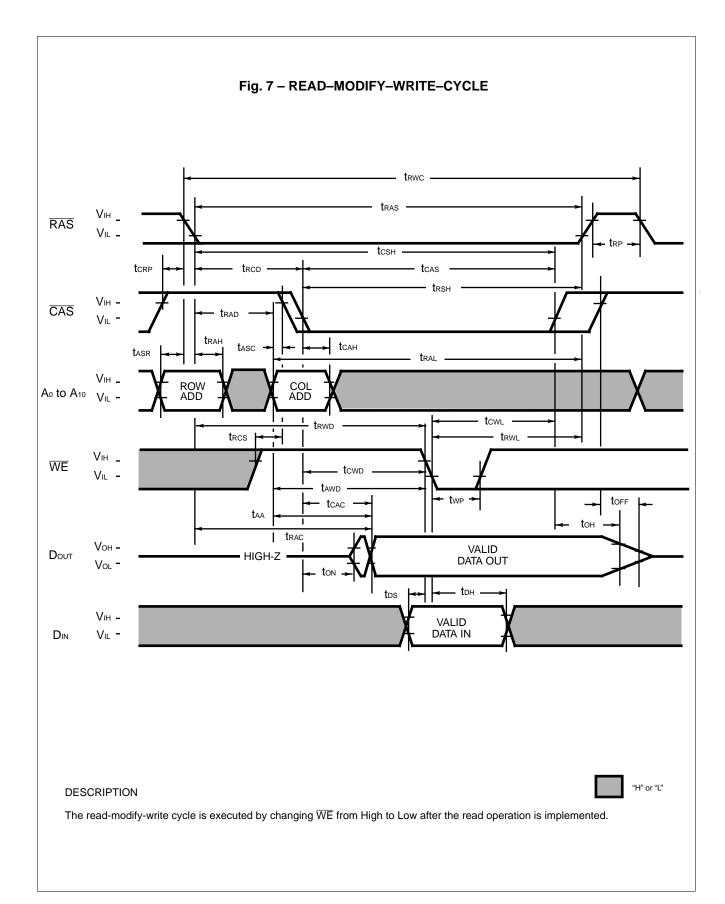
Notes: 1. Referenced to Vss.

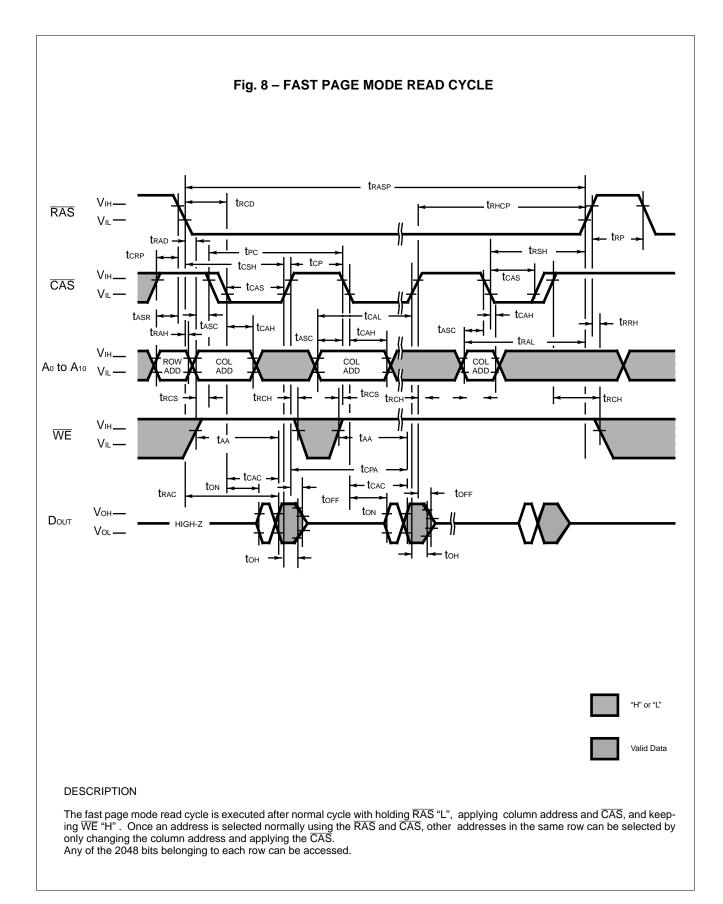
2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

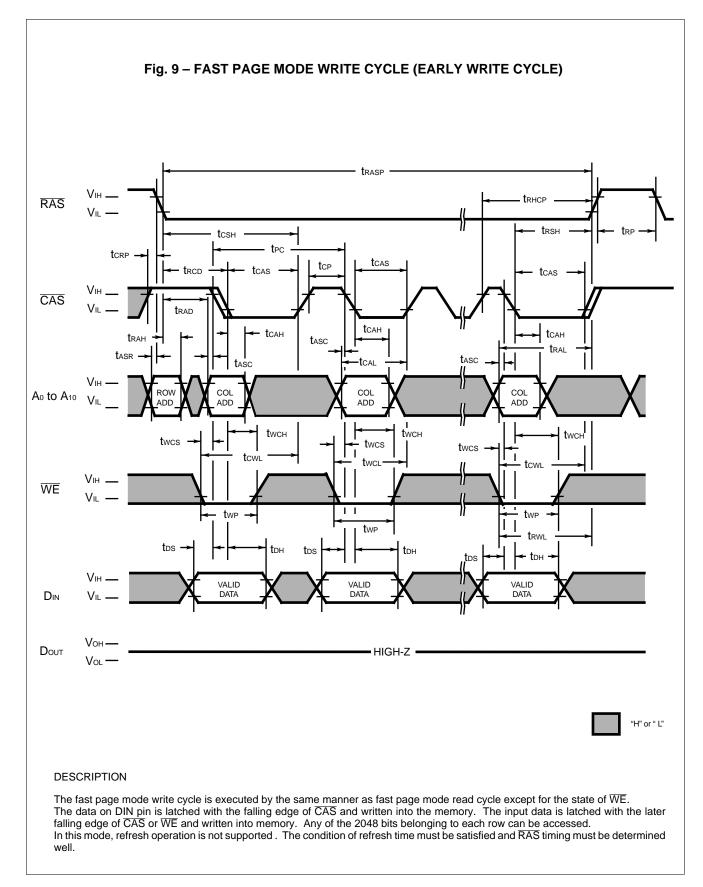
Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$, $V_{IL} > -0.5$ V. Icc1, Icc3 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc4 is specified at one time of address change during one Page cycle.

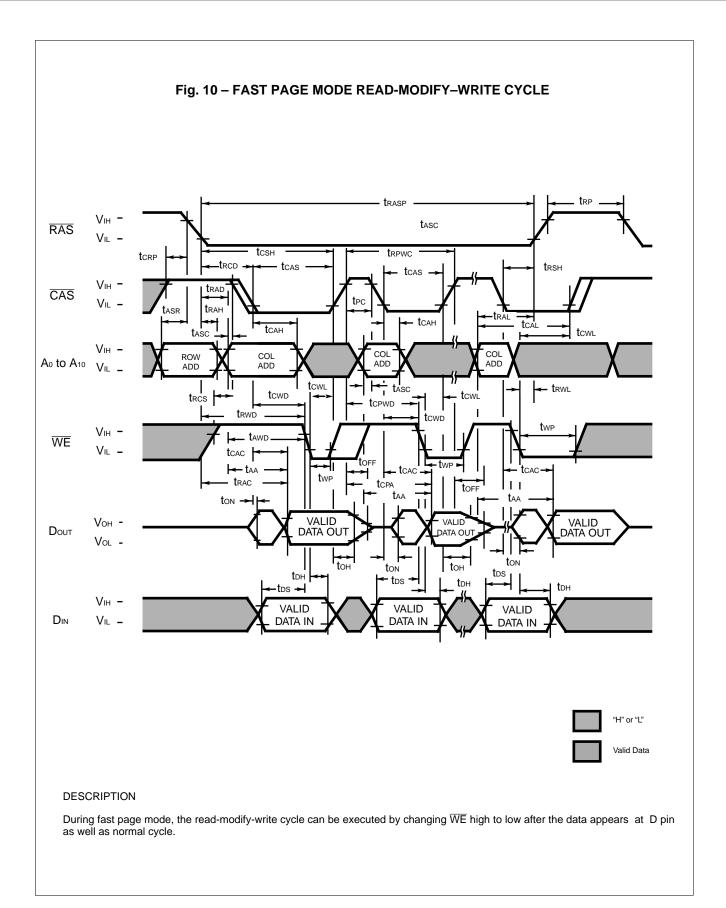

- An Initial pause (RAS=CAS=V_{IH}) of 200 μs is required after power-up followed by RAS only refresh cycle or CAS before RAS refresh cycle (WE= "H") before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of RAS only refresh cycle are required.
- 4. AC characteristics assume $t_T = 5$ ns.
- 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- 6. Assumes that $t_{RCD} \le t_{RCD}$ (max.) and $t_{RAD} \le t_{RAD}$ (max.). If $t_{RCD} > t_{RCD}$ (max.) or $t_{RAD} > t_{RAD}$ (max.), t_{RAC} will be increased by the amount that t_{RCD} or t_{RCD} exceeds the maximum recommended value shown in this table. Refer to Fig. 2 and 3.
- 7. If trcd \geq trcd (max.), trad \geq trad (max.), and tasc \geq taa tcac tr, access time is tcac.
- 8. If $t_{RAD} \ge t_{RAD}$ (max.) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is t_{AA} .
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toff is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.)+ 2 tr + tasc (min.).
- 13. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only; if tRAD is greater than the specified tRAD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs, trwb, tcwb and tawb are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.), the cycle is a Early-Write cycle and data out pin will remain open circuit (high impedance) through the entire cycle. If twrb ≥ twrb (min.), tcwb ≥ tcwb (min.) and tawb ≥ tawb (min.), the cycle is a Read-Modify-Write cycle and data out pin will contain data read from the selected cell. If WE is falled when neither of above sets of conditions is satisfied, the cycle is a Delayed-Write cycle and the writing to the selected cell is executed when trwb, tcwb, tcab and trab are satisfied, but the condition of the data out pin is indeterminated.
- 16. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.).
- 17. Assumes that \overline{CAS} -before- \overline{RAS} refresh.
- 18. Assumes that Test mode function.
- 19. If trcd \leq trcd (max.), tdH = 18 ns. Otherwise, tdH = 15 ns

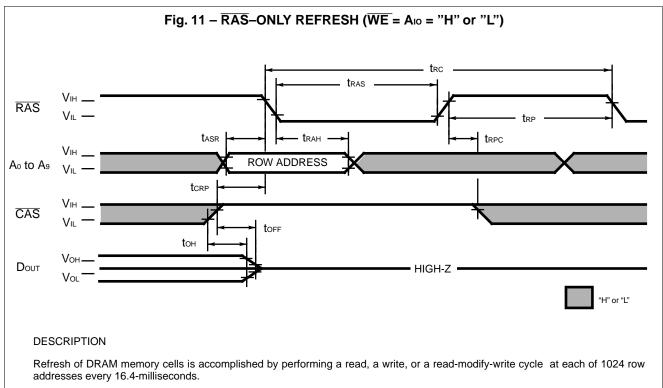


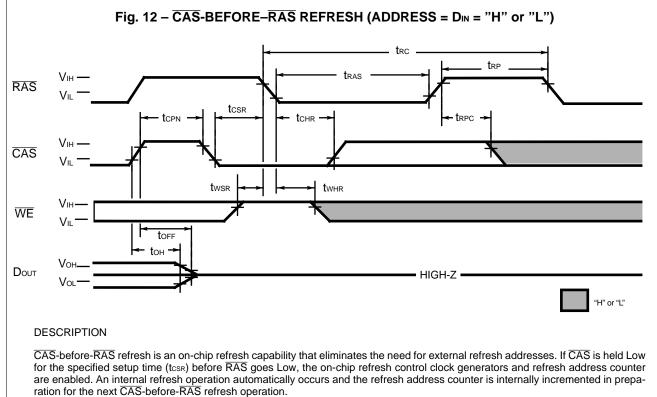

■ FUNCTIONAL TRUTH TABLE

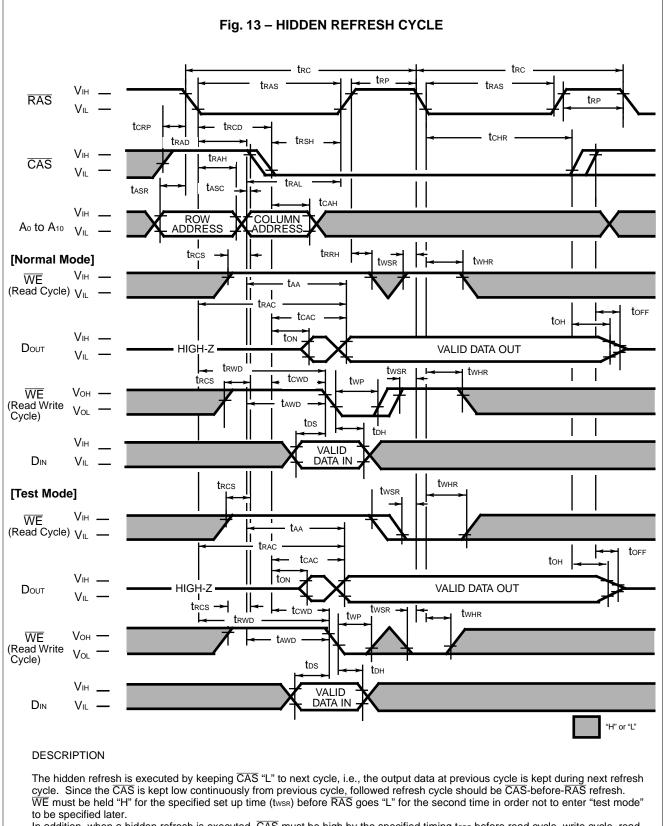

Operation Made	Clock Input		Address		Input Data		Refresh	Note	
Operation Mode	RAS	CAS	WE	Row	Column	Input	Oupput	Refresh	Note
Standby	Н	Н	Х	—	—	_	High-Z		
Read Cycle	L	L	Н	Valid	Valid		Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes*	twcs ≥ twcs (min.)
Read-Modify-Write Cycle	L	L	H→L	Valid	Valid	X→ Valid	Valid	Yes*	tcwp ≥ tcwp (min.)
RAS-only Refresh Cycle	L	н	х	Valid	_	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	н	_	_	_	High-Z	Yes	tcsr ≥ tcsr (min.)
Hidden Refresh Cycle	H→L	L	н	_	_	_	Valid	Yes	Previous data is kept.
Test Mode Set Cycle (CBR)	L	L	L	_	—	_	High-Z	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)
Test Mode Set Cycle (Hidden)	H→L	L	L	_	_	_	Valid	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)

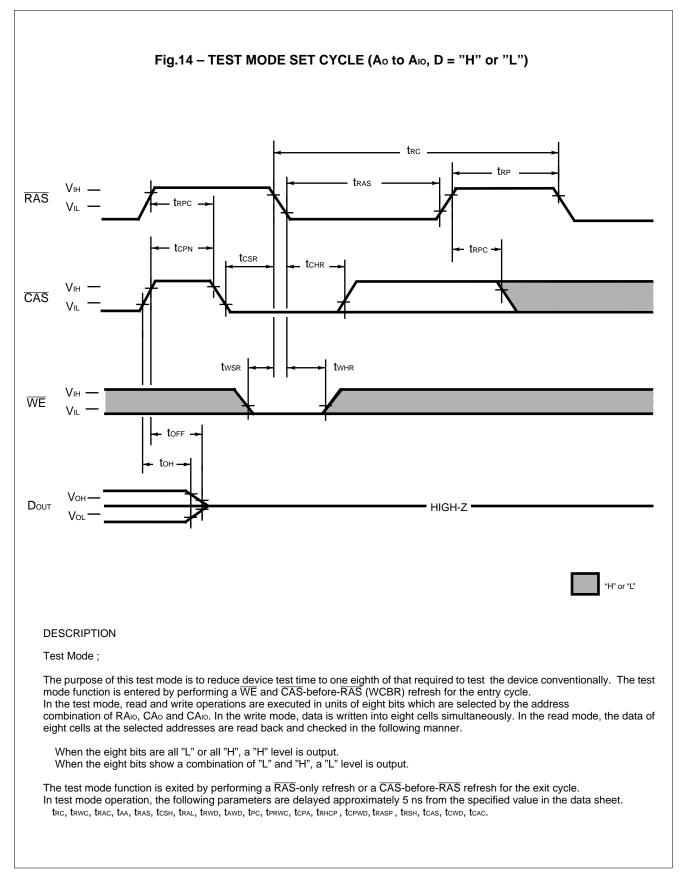

X; "H" or "L" *; It is impossible in Fast Page Mode

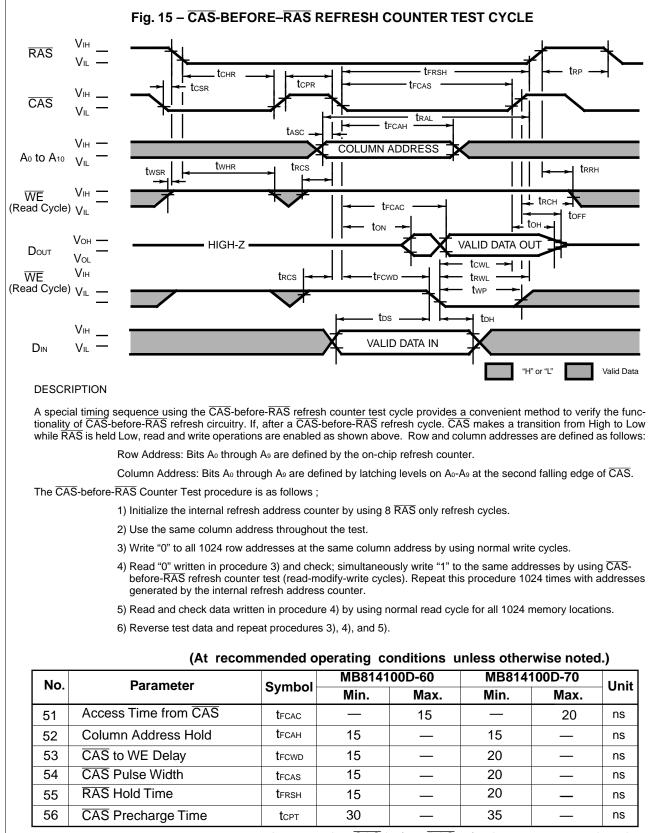




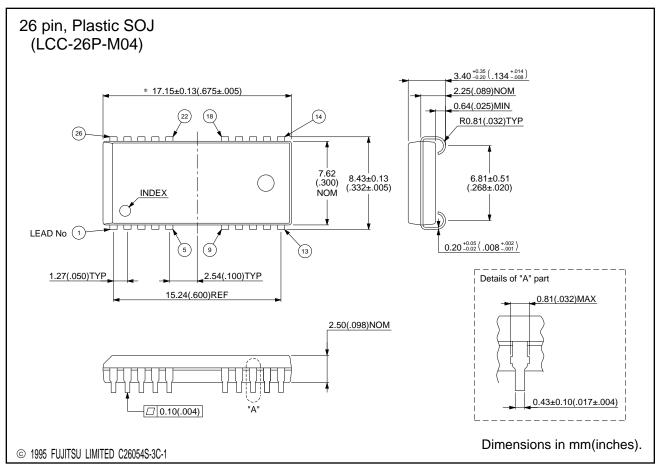





RAS-only refresh is performed by keeping CAS High throughout the cycle; D pin is kept in a high-impedance state.



WE must be held High for the specified set up time (twsR) before RAS goes low in order not to enter "test mode".


In addition, when a hidden refresh is executed, CAS must be high by the specified timing tcRP before read cycle, write cycle, read-write/ read-modify-write or page-mode cycle is executed.

Assumes that CAS-before-RAS refresh counter test cycle only.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED **Corporate Global Business Support Division Electronic Devices** KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.